4,034 research outputs found

    Nondestructive evaluation of 3d printed, extruded, and natural polymer structures using terahertz spectroscopy and imaging

    Get PDF
    Terahertz (THz) spectroscopy and imaging are considered for the nondestructive evaluation (NDE) of various three-dimensional (3D) printed, extruded, and natural polymer structures. THz radiation is the prime candidate for many NDE challenges due to the added benefits of safety, increased contrast and depth resolution, and optical characteristic visualization when compared to other techniques. THz imaging, using a wide bandwidth pulse-based system, can evaluate the external and internal structure of most nonconductive and nonpolar materials without any permanent effects. NDE images can be created based on THz pulse attributes or a material’s spectroscopic characteristics such as refractive index, attenuation coefficient, or the level birefringence present within. The evaluation processes for polyethylene gas pipes and amber specimens lack efficient and accurate NDE techniques while 3D printed polymer structures currently have no standardized NDE methods. The primary focus of this research is to determine and evaluate the use of THz spectroscopy and imaging as a NDE technique for a variety of polymers extruded mechanically and naturally. Results indicate the refractive indices, attenuation coefficients, and level of birefringence of several 3D printing filaments including copolyester (CPE), nylon, polycarbonate (PC), polylactic acid (PLA), and polypropylene (PP) may change depending on the printing parameters. THz spectroscopy is used to measure relative permittivity of printed ceramic samples with various sintering temperatures. THz imaging proves to be a successful method to diagnose print head misalignment in ceramic nanoparticle jetting printing processes. Proper diagnosis of surface level defects on polyethylene (PE) gas pipelines is achieved along with preliminary joint fault imaging and 3D visualization by creating an interactive detailed map of surface level defects. THz NDE imaging, combined with tailored refractive index matching materials, can construct tomographic images and 3D reconstructions of multi-million-year-old amber. Visual and THz birefringence images are created to determine stress direction within extruded PE and amber. These results suggest that THz spectroscopy and imaging have multiple confirmed uses in the NDE of polymer structures, both mechanically and naturally fabricated

    The potential for dietary factors to prevent or treat osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease for which there are no disease-modifying drugs. It is a leading cause of disability in the UK. Increasing age and obesity are both major risk factors for OA and the health and economic burden of this disease will increase in the future. Focusing on compounds from the habitual diet that may prevent the onset or slow the progression of OA is a strategy that has been under-investigated to date. An approach that relies on dietary modification is clearly attractive in terms of risk/benefit and more likely to be implementable at the population level. However, before undertaking a full clinical trial to examine potential efficacy, detailed molecular studies are required in order to optimise the design. This review focuses on potential dietary factors that may reduce the risk or progression of OA, including micronutrients, fatty acids, flavonoids and other phytochemicals. It therefore ignores data coming from classical inflammatory arthritides and nutraceuticals such as glucosamine and chondroitin. In conclusion, diet offers a route by which the health of the joint can be protected and OA incidence or progression decreased. In a chronic disease, with risk factors increasing in the population and with no pharmaceutical cure, an understanding of this will be crucial

    Sensitivity of Simulations of Double Detonation Type Ia Supernova to Integration Methodology

    Full text link
    We study the coupling of hydrodynamics and reactions in simulations of the double detonation model for Type Ia supernovae. When assessing the convergence of simulations, the focus is usually on spatial resolution; however, the method of coupling the physics together as well as the tolerances used in integrating a reaction network also play an important role. In this paper, we explore how the choices made in both coupling and integrating the reaction portion of a simulation (operator / Strang splitting vs.\ the simplified spectral deferred corrections method we introduced previously) influences the accuracy, efficiency, and the nucleosynthesis of simulations of double detonations. We find no need to limit reaction rates or reduce the simulation timestep to the reaction timescale. The entire simulation methodology used here is GPU-accelerated and made freely available as part of the Castro simulation code.Comment: submitted to Astrophysical Journa

    Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications

    Get PDF
    We report tuning of the moduli and surface roughness of magnetorheological elastomers (MREs) by varying applied magnetic field. Ultrasoft MREs are fabricated using a physiologically relevant commercial polymer, SylgardTM 527, and carbonyl iron powder (CIP). We found that the shear storage modulus, Young\u27s modulus, and root-mean-square surface roughness are increased by ∼41×, ∼11×, and ∼11×, respectively, when subjected to a magnetic field strength of 95.5 kA m−1. Single fit parameter equations are presented that capture the tunability of the moduli and surface roughness as a function of CIP volume fraction and magnetic field strength. These magnetic field-induced changes in the mechanical moduli and surface roughness of MREs are key parameters for biological applications

    Offspring of parents with chronic pain: A systematic review and meta-analysis of pain, health, psychological, and family outcomes

    Get PDF
    Offspring of parents with chronic pain may be at risk for poorer outcomes than offspring of healthy parents. The objective of this research was to provide a comprehensive mixed-methods systematic synthesis of all available research on outcomes in offspring of parents with chronic pain. A systematic search was conducted for published articles in English examining pain, health, psychological, or family outcomes in offspring of parents with chronic pain. Fifty-nine eligible articles were identified (31 population-based, 25 clinical, 3 qualitative), including offspring from birth to adulthood and parents with varying chronic pain diagnoses (eg, mixed pain samples, arthritis). Meta-analysis was used to synthesize the results from population-based and clinical studies, while meta-ethnography was used to synthesize the results of qualitative studies. Increased pain complaints were found in offspring of mothers and of fathers with chronic pain and when both parents had chronic pain. Newborns of mothers with chronic pain were more likely to have adverse birth outcomes, including low birthweight, preterm delivery, caesarian section, intensive care admission, and mortality. Offspring of parents with chronic pain had greater externalizing and internalizing problems and poorer social competence and family outcomes. No significant differences were found on teacher-reported externalizing problems. The meta-ethnography identified 6 key concepts (developing independence, developing compassion, learning about health and coping, missing out, emotional health, and struggles communicating with parents). Across study designs, offspring of parents with chronic pain had poorer outcomes than other offspring, although the meta-ethnography noted some constructive impact of having a parent with chronic pain. © 2015 International Association for the Study of Pain

    Sequence analysis and editing for bisulphite genomic sequencing projects

    Get PDF
    Bisulphite genomic sequencing is a widely used technique for detailed analysis of the methylation status of a region of DNA. It relies upon the selective deamination of unmethylated cytosine to uracil after treatment with sodium bisulphite, usually followed by PCR amplification of the chosen target region. Since this two-step procedure replaces all unmethylated cytosine bases with thymine, PCR products derived from unmethylated templates contain only three types of nucleotide, in unequal proportions. This can create a number of technical difficulties (e.g. for some base-calling methods) and impedes manual analysis of sequencing results (since the long runs of T or A residues are difficult to align visually with the parent sequence). To facilitate the detailed analysis of bisulphite PCR products (particularly using multiple cloned templates), we have developed a visually intuitive program that identifies the methylation status of CpG dinucleotides by analysis of raw sequence data files produced by MegaBace or ABI sequencers as well as Staden SCF trace files and plain text files. The program then also collates and presents data derived from independent templates (e.g. separate clones). This results in a considerable reduction in the time required for completion of a detailed genomic methylation project

    Polynitroxyl Albumin and Albumin Therapy After Pediatric Asphyxial Cardia Arrest: Effects on Cerebral Blood Flow and Neurologic Outcome

    Get PDF
    Postresuscitation cerebral blood flow (CBF) disturbances and generation of reactive oxygen species likely contribute to impaired neurologic outcome after pediatric cardiac arrest (CA). Hence, we determined the effects of the antioxidant colloid polynitroxyl albumin (PNA) versus albumin or normal saline (NS) on CBF and neurologic outcome after asphyxial CA in immature rats. We induced asphyxia for 9 minutes in male and female postnatal day 16 to 18 rats randomized to receive PNA, albumin, or NS at resuscitation from CA or sham surgery. Regional CBF was measured serially from 5 to 150 minutes after resuscitation by arterial spin-labeled magnetic resonance imaging. We assessed motor function (beam balance and inclined plane), spatial memory retention (water maze), and hippocampal neuronal survival. Polynitroxyl albumin reduced early hyperemia seen 5 minutes after CA. In contrast, albumin markedly increased and prolonged hyperemia. In the delayed period after resuscitation (90 to 150 minutes), CBF was comparable among groups. Both PNA- and albumin-treated rats performed better in the water maze versus NS after CA. This benefit was observed only in males. Hippocampal neuron survival was similar between injury groups. Treatment of immature rats with PNA or albumin resulted in divergent acute changes in CBF, but both improved spatial memory retention in males after asphyxial CA
    corecore